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1. Introduction

~The paramagnetic resonance of the peroxylamine disulfonate
ion, on(soB)e”, even in cryatals of the potassium salt, 1s not
characterized by the pronounced exchange aarrowing frequently
observed for free radical molecules. It 1s perhapco attributable
to this weakness of the exchange interaction that one can observe &
well-resolved hyperfine splitting from the Nlu nucleur in liquid
solutions containing this ion in concentrations even larger than

0.1 molar.l There is, therefore, a range of concentrations over

1. Pake, Townseind, and Weissman, Phys. Rev. 85, 682 (1952).

which magnetic dipole transitions of the coupled system, elzctronic
moment plus nuclear moment, can be observed in fields near 10 gauss

with adequate signal-to-noise. Measurements by Townsend2 have

2. Townsend, Weissm2n, and Pake, Phys. Rev. 89, 606 (1953).

shown that, in fields up to 50 gauss and at frequencies between

9 and 120 Mc/sec, the Breit-Rabi energy levels for a sysfem with

I =1, J = 1/2 apply to the peroxylamine disulfonate ion in solution.
The present work concerns itself with the mechapism which

maintains the population differential between a particular palr of

levels participating in resonance abksorption. This mechanism will

also be shown in the system at hand to dominate in producing the

observed line width. The mechanisms of interest in determining

measured widths of paramagnetic resonances are, in general, the

spin-spin snd spin-laf “ice lnteractions, which may occasicnally be
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in iow fields (~30 gauss) are two-fold. First, the individual
hyperfine components become only a fraction of a gauss wide at
concentrations below about 10™2 molar. In the wmagnetic fields of
severai thcusand gauss. which correspond to microwave frequencies,
care must be exercised to assure that field inhomogeneities over
the sample do not contribute to the measured line width. It, for
example, Helmholz coils or a solenoid are used in producing the

30 gruss field, no effort at all is required to keep inhomogeneities
below 10'2 gau3® over a sample of several cubic centimeters volume.
The second advantage is more compelling. To separate non-negligible
apin-ap;n processes, if any, from the spin-lattice interactions
limiting the lifetime of a sp’ “-state, one needs to know the spin-
lattice relaxation time. Whi 2 this can be measured with difficulty

at microwave frequenciea"u, microwave generators with adequate

3. C. P. Slichter, Thesis, Harvard University. Also Phys. Rev. 76,
866 (1949).

M. 8Schneider and England, Physica 17, 221 (1951).

power are not presently available in this laboratory, and the
techniques, in any event, are not as easily applied as those using
lumped parameter circuits.

The Hamiltonian function describing the interaction
leading to the hyperfine structure is”

-+ S
9('SJ"o“o"zp*"I’J’SzPo“oIzp (1.01)
(o] (o]

5. G. Breit an4 I. I. Rabi, Phys. Rev. 38, 2082 (1931). See also
Nafe and Nelson, Phys. Rev. 73, 718 (1948).

e
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.unrkedly obscured by instrumental effects. The advantages of working
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where 8 is the spectroscopic splitting ractor.tor the free
redical; for a free electron 8y = By = 2.002%. The magnitude of
the Bohr magneton 1is Ro» and the antiparallellity of J and the
magnetic moment of the electron is explicitly taken into account
by the positive sign pieceding the first term of < .0l). H, 1s
the applied external field, and a is the hyperfine coupling constant.
Since we take g, as the nuclear g factor referred %o the (positive)
Bobr magneton, m ., 1t is the conventional nuclear g divided by
MW/mn = .836.

The Breit-Rabi energy levels’ given by the Hamiltonian
(1.01) for T = 1, J = 1/2 are displayed in Pig. 1. It i1s perhaps
worthwhile to point out that, for a free radical molecule, one
does not know in advance the sign of the hyperfine coupling constant
2 since the molecular orbitals for the ground state are an unknown
superposition of atomic orbitals which may include those correspon-
ding to atomic s or p states. The former contributes to a
through the electron probability density at the nucleus, whersas p
states contribute a term of opposite sign involving the average
value of rD over the orbit. Even if a particular symmetry operation
leads to the molecular counterpart of parity as a gcod quantum
number, in such a way that molecular 2 and 7 states cannot be
superimposad, one does not know without additional spectroscopic

studies whether the ground state of ON{(S0 T 18 even or odd with

3)2

respect to this quantum number, and the sign of a remains unknown.
This ambiguity of sign means that Pig. 1 may dbe incorrect,

and should perhaps be reflscted in the abscisees axis. It is also

impossible, therefore, to know which brench of lievels will have a
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crossover point at fields sufficient to aecouple tiic nucleus frow
the electron (although the sign of the nuclear g-factor fixes the

position of che levels after the crossover). For our work in

oscillating rf fields, at frequencies even as hizh as 10,000 Mc/sec,
the ambiguity of sign has no effect on the t---_.tion frequencies,
since the spacing between the levels is, of course, unaltered by
reflecting the energy level scheme. A rotating field could be

used to settle the qPoation of the sign of a 1f it were desired.
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The particular transition studied in the present work 1is
that between the levels P = 3/2, My = <1/2 and P = /2, mp, = -3/2.
This trensition has a frequency which increases monotonically from
gzero. However, the retio of frequency-to-field is not effectively
constant until large enough fields are attained to decouple J from
I. In order to treat the spin interaction processes later on, we

reproduce here the wave functions and energies which apply to the




levels involved in the tmneitio: marked in Fig. 1. The variable
18 x = (8;-8,)p H/h4Y; from Townsend's measurements, x = 1
corresponds to N = 19.5 gauss.
Table I .

P om PEm - Z, (Pulmga) o(mp) Kimp)

s % Vi = e x)

£ 3 Yo =2 e(F) %0) + b e(- ) K1)

2 -3 Y3 wc o) A1) + a o(- 3 X(0) (1.02)
% _-% Yy =3 A
3o | W oD o) -a e

3 +3 Vs = a o(- 3 x(1) - b *(3) o)

The coefficients, as functious of x = (g;-8;) poﬂo/hdx), will

be expressed in terms of r = (1 + g-x + Jce)“/2 and (:- (1 - %x + x2)1/2-
12 = % + %— -
2 -4 {3} -

(1.03)
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The energy levels of Fig. 1 are given by
h 4y hgy dmx . 2,1/
123 " TTF HCTRAEE SECRE SRS
The experiments to be discussed in Section 8 involve excitation
of transitions between levels 3 and § of Pig. 1 at 2 frequency

1/2
\);3 = 4\,{— %(l-x) + %(1 - %x + xa) } + gIPOHO/h

of 60 Mo/sec, which corresponds to an external magnetic field of
about 31.% oersteds. Values of the coefficients of 2gqs.(1.03)
for this ield are listed below:

22 = 0.950

2

b - 00050

X = ngou./Av = 1.610

e? = 0.903

a® = 6.097

For the ON(803)2'° ion, gI/gJ ~10"% and we shall usually neglect
81 in comparison with 8-

2. Paremagnetic Relaxation and Spin Satursation

Paramagnetic relaxation is the process of energy exchange
between an assembly of paramagnetic spins and its surroundings
which permits the spin-state populations to adjust themselves to
the equilidrium distribution corresponding to a given magnetic
field and temperature. It 1s customary to regard the entire
paremagnetic sample (solid, liquid, or gas) as a super system
composed of two weakly interactiag sub-systems; the system of

interest or spin system, having spin coordinates among its degrees

(1.0%)

(1.05)




¢! freedom, and the surroundings or lattice system having only
orbdbital degrees of freedom.

It 1s the weak interaction, X _,p, between spins and the
lattice which is the object of relaxation studies. In practical
cases, the question is one of trying to discover which of a number
of possidly important spin-lattice interactions effects the experi-
mentally observed relaxation. In certain examples relaxation has
been studied experimentally through direct observation of the
characteristic time required for the estadlishment of spin equili-
brium (the relaxation time). In other examples, particularly 1if
the relaxation time is short, one measures essentially the thermal
conductivity between the spins and the lattice by observing the
rate at which energy, absorbed by the spins frow a laboratory
source, is passed on to the lattice via the relaxation mechanisms;
this is the saturation method.

It 18 of course quite feasidble to cloak these measurements

in thermodynamic terms, as was done by Casimir and du Pr66. We

6. Casimir and du Prg, Physica 5, 507 (1938).
H. B. G. Casimir, Physica 6, 159 (1939).

shaili usually confine our approach to ‘that of quantum statistics
and speak in terms of the transition probabilities per unit time
induced by ){al‘ Either a direct relaxation time measurement or a
esaturation experiment will be treated in terms of the way in which
the populations of the various energy states are influenced by
these probabilities.

PP R e
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Such an analysis of the relaxation time for an assemdly
of spin 1/2 particles is otraighttorunrd@ a unique relaxation tiwe is
easily defined for the establichment of the equilibriam population

. Bloembergen, Purcell, and Pound . Rev. 6 1 £t
4 ”%.mﬁgto.h.m;t.i- :' BP%. » Phys ev. 73, 679 (1948) 3 often

difference between the two spin-states accessible to each particle.
However, a more complicated energy level scheme may not permit the
‘uuocintiou of a single relaxation time with each pair of levels
between which a population difference will exist at equilibrium.
An example is the coupled system consisting of the odd electron
and the x4 nucleus of the free-radical ion ON(SOB)Q”. Not only
are there six unevenly spaced levels, but the selection rules
permit magnetic dipule treansitions between all but five of the
fifteen different pairs of levels. In general, one finds that the
approach, from an initially disturbed state, to the equilibrium
level population is doﬁcribed by'an expression of the form

N&(*) = ; by exp C=N%) . (2.01)
If after eappreciable elapse of time, several comparable terms in the
sum (2.01) are dominant, it will be impossible to express any
pobulation difference, involving level k, with only one exponential
term, and there will be no single relaxation time.

The saturation procedure does not suppose any specific
nathematical form for the approach to equilibrium of the population
difference between a pair of levels. This method excites transitions

betweenthe levels in question by means of a laboratory radiation

———— - -~ - . .
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field. (We presume throughout this discussion the existence of
a constant external magnetic field which removes the orientation
degeneracy of individual spins). As we shall later verify (sec 3),
the transition probabilities induced by the laboratory field are,
for practical purposes, microscopically reversible, which means
that the net energy absorption -- and therefore also the detected
rf absorption signal -- is proportional to the population difference.
In the presence of a given laboratory radiation field, then, a
stationary spin population distribution will ultimately odbtain in
which this rf absorption is just balanced by the energy carried
to the lattice through all relaxation processes. (As taken up in
section 5 the transition probabilities describing the relaxation
processes cannot possess microscopic reversidility 1f there is to
be 2 non-vanishing population differential at equilibrium.) It
follows that a study of relative absorption intensity as a function
of the rf power level must give direct information about the inter-
action )( al which permits energy exchange between the spins and the
lattice.

Explicit emphasis should perhaps be given to the fact that
a given level of saturation is characterized by stationarity of spin

population, but not, of course, by thermal equilibrium. Indeed, the
stationarity exists only if the thermal capacity of the lattice,
which 18 in turn normally in excellent thermal contact with its
laboratory surroundings, is large. Except at very low temperatures,
this condition is usually fulfilled. For this reason, although
there 18 a steady flow of energy into the lattice, we shall speak

of a 1lattice teaperature, assumed not to change during a given

. s o s it s e — et GolTS © YDAS S B P -t = = T W b S e e et i )
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measurement, which is essentially a temperature fixed by the

sample's immediate laboratory surroundings.®

*x In the early unsuccessful attempt of Gorter to observed nuclaar

- _ paramagnetic resonance, the small change of lattice temperature

during application of a strong rf fisld at the Larmor frequency
: was to be the means of detecting the nuclear spin resonance

(Physics 3, 995 (1936)).

3. Definition of the Saturation Pactor and the Relaxation Probability.

The foregoing description of the saturation procedure

suggests that a useful quantity in relaxation studies is the ratio
s .

s (By) K (3.01)
which we shall call the saturation factor. Here N, is the stationary
population of spin state k with zero or negligible rf field present
(thus the thermal equilibrium value) and K, ' 1s the stationary
population in the presence of sn rf field Bl. Evidently sJk(o) =1
and SJk(°°) = Q0. PFor a given input of rf power at spin resonance,
one expects sJk to depend upon lattice temperature and the external
field in wrich resonance occurs.

We now wish to obtain a relationship which expresses the
saturation factor in terms of the laboratory-induced transition

1 prabadbility per unit tilme, ij, and the transition probability per

unit time, which 18 induced by the spin-lattice intaraction )435.

UJk’
We shall let 'Jk - UJk + ka denote the probability prer unit time,

due to both relaxation mechanisms and the laboratory apparatus, that
a system ncw in spin state ] will be found at a later time in state k

. A—— P - A . Wis
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If there are a total number N of spin systems to be distributed
over the n states accessible to «n individual spin, then the
following difTerential equations describe the shifting of the
population frections, Q = NJ/N, by expressing easentially the

' . conservation of systems:
b » dQ n
| et - Z (Q Wy = Qy Vy) E.1,...,n] (3.02)
, k=l
kgJ

Under oonditions cf population stationarity, Eqs.(3.02) become n
homogeneous linear equations in the Q's which are readily seen to
be consistent, since any row of their coefficient determinant 1is

obtainable by adding the other n-1 rows. The Q's are of course
th s

not all independent, since if n-1l cf them are known, the
determined. Thus the system of equations may be solved by replacing
any one of the n homogeneous equations

n
Z (ok wa - ¢;1J wjk) - 0 Ej-l,...,xﬂ (3.03) |

kfl :
k¢d ik
by
Qg. |
Qk -] (3-04) |
él |
3 To deieraine the saturation factor S_,, we require the
H
" difference Aﬁpq - Qp-Qq under the conditions ]
Wo = Uy r_qp p Jk p pg
"pq - qu + Vv (3.05)
qu = qu + 7

'

‘ - ¢ 5 = o - . =
e - . - —— W i A S e
e , vt
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expressing the :sversibility of Vb.q - vqp = V and that the laboratory
source mduges transitions between states p and q only.

For sinplicit}, let us srbitrarily number the states p
and q between which the radiation field produces transitions with
* . the probability V, by the numbers 1 and 2. Then, substituting

Q, -421 + Q,, one obtains the following equations

Q, D’el + V- (v+z Ulk)] +Aa(021+v) + Q.5t)31 +oeet QU =0

U V- (VU - v G U SO C g =0
~ Y [ 12+ 7 ( z Qkﬂ 421.( )t Glsp +omot %nIn2 3.06)
Q (U + t.)em) +42{ Uy, + Q;tljm +ooot Q;zunm =0 |

Q (U, + T, ) 4 Aai on  * Q;U}n PO % -0

Noting that Vv, by virtdo of its practical microscopic reversibility,
appears only in two positions in the second column,  one can
eliminate one V term by replacing, for example, the second equation
by Eq.(3.08). If one then solves for A 01 DY expanding determinants
in terms of the cofactors of the second column; he obtains

c
4, - 3 22 ‘ (3.07)
£ UoyClox + V:Cpyy + Cpp

th

where cak is the cofactor of the second column element in the k
row. Por a spin system in thermal equilibrium at room temperature,
A21~(82-Bl)/ld' = hY/KT. Por magnetic dipole transitions which
would occur at radiofrequencies between 1 MC/sec and 30,000 Mc/sec,
A21 ranges between 10”7 and 5 x 10~°.

Then EQ.(3.07) indicates that Z Uy, Coy exceeds C,, by a factor
ka3

at leust 200 (and, for the experiments of Section 7, by 105) .
Hence C,, can be dropped from the denominator of Eq.(3.07) and
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one finds 8,, = 421(7)/A21(0) to be

L —— (3.08)

1
Upy + Tor UoxCor
k=3

S =

1+

This may be comparsd with BPP's Bqs.(1:), (%) and (33) to show that
our result reduces to theirs when there are just two levels. Although
a systenm of many levels without special selection rules does not

generally admit to definition of a single relaxation time for a pair
of levels, the coefficient of V in Eq.(3.u8), which for a two level

system is twice the relaxation time Tl’ is nevertheless the signifi-
cant quantity indicating the potency of' relaxation mechanisms whioch

give rise to the UJk transition probabilities. We shall define

the reciprocal of the coefficient of V to be the relaxation

Rrobability, wR:

n
1 :E::
W, = U +
R 21 521 02k02k 2.09)
K

We can thus speak of measuring relaxation probabilities in

situations where it is not strictly correct to speak of measuring

relaxation times.®

% 70 the extent that Bloch's phenomenological equations {Phys. Rev.
J0, %60 (1946)) adequately represent the motion of the magnetiza-
tion vector associated with a particular spin system, The time Tl
descr.bing the exponential decay of that magnetization will, of
course, be a perfectly useful parameter. However, one cannot
assert generally that the Bloch Tl bears any simple relationship
to the 2.'s of Eq.(2.01).
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M. The Laboretory-induced Transition Probability

Experimental measurement of Hk can be wade by measuring

S for a known rf field and using the result of Eqs.(3.08) and (i.09),
-1
S = [1 + v/u,a , (3.01)

once we know how V depends upon the rf field.

The probadbility ka is often calculated from the semi-~

classical perturbation treatment of radiation,s in whi<h event one

8, See, for example, L. I. Schiff, Quantum Mechanics (McGraw-H11l
Book Co., 1949), sections 29 and 35. .

acsumes the existence of zero order spin runctionsun,which satisfy

the eigenvalue equation

!un - Bnun , (.’.02)

and a perturbing interaction
H' = A [e“"t + o'“"‘j = 2A coswt. (4.03)

In our case of particular interest in magnetic dipole transitions,

A may arise from an interaction -)’xﬁ where -I; is the field of the
oscillator used in the laboratory to cause spin resonance. Then

the usual time-dependent perturbation calculation yields the following
first order expression for the probability that the system, ini-

~tially in a state j, will b§ found in state k.

n 4 sin® 1(6) -0)
a (t)|° =472 l(k|aly)}? —““——zi—? K 4,
l k l ] ! ! ' (ﬁl -(.)) ( M)

- - l \
I

4
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Now for times not too short, i
§ s1n? M, - D)t ‘
2 7k -t $(Y, V), (%.05)
(e 4-@) J

and the probability per unit time is
Viar = h 2 (xlal)]? S(V -V) (¥.16"

If we take ){' = -;nx(anl) cos wt and suppcse that the spin resonance
frequencies of the individual spins of the sarle 2re distributed
over a finite frequency range according to a normelized line shape
function g() ), then

Vi =82 82 |(dp 92 e¥). (8.07)

The ka so obtained 1s of necessity microscopically reversible,
because Px 18 Hermitian.

If, however, the quantum nature of the radiation field is
taken into account, the probability of absorptive transition is
proportional to the mean number of photons n(Y ) per degree of
freedom of the field coordinates belonging to waves of frequency Y.

Ir (o( Y )dy 1s the energy density of the field per unit volume
in the frequency range dV, then’ I

3
{ - c .

9. Condon and Shortley, Theory of Atomic Spectra (Cambridge :
University Press, 1935) 80. ]
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The quantum treatment of emission shows it to dbe proportionmal to
n(yY ) + 1, thus including in the theory the spontaneous emission
probabllity (when n(y ) = O) arrived at by Einstein from statistical
considerations of thermal equilibrium. To test the effective
reversibility of emission and absorption probabilities, we evaluate
(n(¥Y )+1)/n(+) for the signal generator, assuming it to produce

an rf field of adbout 0.1 gauss in s frequency interval of at most
100 cycles/sec in 6 x 10 oycles/sec. One finds from Rq.(%.08)

that n(») 1e at least 10°2. Then clearly, to the extent that

n(v )+1 & n(v), we may consider that v, '
nmature of our laboratory radiation field is taken into account.

We shall use for either ka or ij the semiclassical result (4.07),
which, since it is proportional to H,° and includes no possibility

" vfd even when the quantum

of spontaneous emission, must correspond in principle to the actual
absorption probadllity.

5. The Transition Probabilities Rffecting Relaxation.

The application of perturdation theory to the calculation

of transiiions induced by ){;‘ is, in principle, straightforward.
One treats ){ , as a perturbing interaction for the zero-order
Ramiltonian

Hy =Y, + X, (5.01)

where )(; and X, are respectively the spin and littice Hamiltonians.
In practice, however, even the assemdbly of spins, which may often
be considered as non-interacting among themselves, offers a highly
degenerete system for which the orthonormal zero-order linear com-

binations are not known, and the normal for the lattice are not known

-
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either. The classic example of a serious effort to take intc
account the normel modes for a particular lattice is Van Vieok's
momumental calculation of the relaxation times for titanium and
chrowe alu-o.lo

10. J. H. Van Vleck, Phys. Rev. 57, %26 (19%0).

Our experiments deal with liquids, for which there 1is
available almost no information on "lattice" eigenstates. Bloen-
bergen, Purcell, and Pound7 have, however, obtained excellent
resulis for nuclear paramagnetic relaxation in liquids by approaching
the problem from the point of view of the correlation spectrum.

The procedure is effectively one of using the semi-classical
perturbation treatment for the effect of an oscillatory magnetic
field component which might arise through translational or rotational
motions of the charges acsociated with molecules of the liquid;

these frequency components are then taken to be distributed according
to the correlation spectrum. We can illustrate this procedure

by taking A of our EQ.(%#.06) as a product®, one factor containing

%or as 2 sum of such product terms.

(lattice) space coordinates and the other dependent upon angular

momentum opwraiors:
A= £(r) P (1,9) (5.02)
Then Eq.(%.06) becomes
Uy, x = 22D IE1d R ) ]2 SOV ) (5.03)

- o S g
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The correlation theory for liquids leads to the oconclusion that

) 2(r}}2 18 aistributed spectrally according to the intensity
2T
YY) =22 2 "—’zc—r'z 5.0%)
3Y) <l(_)l).,,1M”,10 (

where T - is the correlation time and the average is over all time
or, eQuivalently, over all space 1if r(?) is a function of coordinates
which vary randomly with time. Combining Bqs.(5.03) and (5.08),

O = 072 Ikl 2 2o (5,9 [D12) 35V, ) (5.05)

where (V) 1s the normalized spectrum

2t

- L . .06
3) m (5.06)

We now ask to what extent a proper quantum approach, analogous to
Van Vleck's for the alums, would yield significant features not
present in this semi-classical result.

Pollowing the procedure of Sommerfeld and Bothon

, for
example, we would prefer to have quantized the normal modes of the

lattice. The lattice states would then be described by a set of

11. Somerfeld and Bethe, Handbuch der Physik, 2nd ed., vol. 248/2
(8pringer, 1933) soofre.

quantum numbers n, for the f’h mode of elastic waves. The energy
of the Qquantized mode is given by (n1+ %)T\ ®,, and energy exchange
between such modes and the spinz may be described as either emission

cr absorption of a "phonon" of energy h @, by the spin system. Tho




formalisa 1s quite parallel to that for the radiation fieldq,
including the fundamental asymmetry between emission and absorp-

tion. The probadbility of emission (oreation) of a phonon of frequency

Gy.by the spin system is proportional to n, + 1, whereas that of

1
absorption {(annihilation) 1is simply proportional to n,.
If the lattice temperature is T, the mean value of n, 1s

n, "'W}?W"‘ (5.07)

so that emission and absorption probadbilities are in the ratio

emission El_:_l. = e‘h 01/11‘2 {(5.08)

absorption 'ﬁi

U

As with the semiclassical treatment of the radiation
field, Section ¥, the semiclassical result (5.05) is mioroscopically
reversible and is proportional to the intensity of the effective
phonon field. We again identify the semi-classical result with
the absorption probadbility of a full quantum treatment, and the
emission probability is to be calculated from Eq.(5.08). Thus, if
spin state k has greater energy than state },

Uypy = B2 (l(klr(?-)ro,,(x,.r)ia)law (V)

nka/u (5:09)

Uess=Ugar ©

% Note that BEq.(5.09) disagrees with BFP's Eq.(30) (which is for
the speuial case of spin 1/2). Although the BPP equation gives
the proper ratio of emission and abaorption probabilities, each
depends upon the gzero of the energy ncale used in measuring Bp
and Bq of BPP Bq.(29). And, of course, 1if one uses our Bq.(5.08)
and the proportionality between H;2 and n; to express BPP's

T - i = Srp——
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transition probabilities in terms of n,, a peculiar dependence
upon n, results; e.g., U would dbe proportional to

i /2 emission
[i(ni-& 131 .

The distinction between solids and 1iquids, so far as
application of Bq.(5.09) is concerned, will usually involve taking
J(») to be the normalized Debye spectrum of the familiar classical
theory of the specific heat of a s0lid, on one hand, and to be the
correlation spectrum (5.06) on the other. The essential parameter
in the first case is the Debye temperature, whereas in the second

it is the correlation time.

6. Detaliled Balance and Spin Saturati ...
If spin state k has higher energy than state Jj, then at

thermal equilibrium the principle of detailed balance,

ccmbines with Eq.(5.08) to assure a Boltzmann distribution among
the spin states.

It 18 interesting to raise the question whether the
principle of detailed balance applies to the spin system in a
partially saturated state. Treatises on statistical mechanics
often arrive at detailed balance by a classicul argument, and none
which has come to the authors' attention is clear in a quantum
statistical way on whether detailed balance is applicable outside
of thermal equilibrium. PFor our particular problem, the assumption
of detailed bdalance outside thermal equili’brium appears to lead to

a contradiction, as is perhaps most easily illustrazted for three

— e ——— o p———— it am o i D A s~
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levels between any peir of which the selection rules for the
interaction effecting relaxation permit transitions.

Ir “1' "2' and “3 are the level populations, then the
steady state solution of Eqs.(3.03) and (3.08) under conditions of
detailed dalance leads to an expression for nl-xa which can he cast
into the form .

R o e S (6.02)

13732 13723 31723
Now suppose a monochromatic radiation field inducing transitions
between 1 and 2 is introduced. Then Wis = Ujo+V and Wy, = Uy +V
will be altered, and the other W's remain simply the corresponding
U's. We know experimentally that increasing v12 - v21 = V enadbles
ug to diminish “1‘“2 a8 much as we please. Yet, by assuming detailed
balance, we exprassed Nl-xa independently of w12 and therefore of V.
Another way of expressing thi. point is to observe that

detailed balance requires the condition

Wyp Woy Wyy = Wyy Wy, Wy (6.03)
which becomes, for no rf field,

012 023 U31 - 021 032 U13 . (6.08)

Ir V12 @ Val = V is impressed with an external radiation field,
then (6.03) becomes

(012+v) Ups u31 = (ual+v) 032 013 , (6.05)

which cannot hold for all V 1f U, ¥ U;,.

Of course, the .rguments of this seetion do not include

explicit account of direct interaction between the rf field and the




.

-PP=
lattice. Although this is usually extremely weak, and is considered
not to arffect the lattice energy states nor their populations, the
U's are in principle altered by this perturba%ion and a convineing
demonstration would have to verify that the U's are not so altered
as to keep (6.05) always valid. Our argument is essentially that
VY can be and is made compareble to or greater than 012, whereas the
radiation field-lattice interaction should affect the U's only by
a very. small (negligible, we think) fraction.

In the analysis of section 3, therefore, the simple
conservation of systems, as described by Eqs.(3.03) and (3.04), and
the assumption that the presence of V does not alter the U's are
used to obtain the saturation factor. There is no question of

applying detailed balance, since it is violated by these assumptions.

{. Apparatus and Experimental Procedure.
Pig. 2 is a block diagram of the apparatus used to produce

the transitions, detect the resonance, and measure the saturation
factor 8. The 60Mc/sec rf field is produced in the tanx coil of a
Colpitts-type oscillator which forms part of a magnetic resonance

spectrometer similar in design to that of Schuater.12 Audio amplifiers

12. N. A. Schuster, Thesis, Washington University (1451).

with a total gain of about a million followed the resonance

detector and fed a pha~sa-sensitive detector.l3

13. N. A. Schuster, Rev Sci. Instr 22, 254 (1951).
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A 30-cycle signal generator produced a square wave reference
signal for the phase-sensitive detector and a synchronized sinusoid
which, after power amplification, modulated the Helmholtz coil
field of about 30 oersteds. This generator also supplied the

13

30 cycle signal to the grid of the calibrator”', a device which

essentially places the plate resistance of a triode, type 955 in

13, G. D. Watkins and R. V. Pound, Phya. Rev. 82, 343 (1951).
The authors are indebted to Dr. Watkins for communicating to
them further information on his work.

this case, across the oscillator tank coil to provide disippation
which simulates a non-saturable signal serving as a companion
standard for the paramagnetic sauple.

In order to know the transition probability (4.07)
produced by the oscillator for a given sample, one requires the
half-amplitudes al of the rf field at the sample. Por this purpose

& vacuum tudbe voltmeter was built into the apparatus to measure the

r.m.s. voltage v across the sample coil. The inductance of the coll,

which was wound of small flat copper strap to minimize the capacitance

between turns, was determined, and the ratio of magnetic field to
current in the coil was obtained by performing an auxiliary
réesonance experiment for which a direct current through the coil
produced the external magnetic field for a still smaller coil
containing a free radical. The result so obtained is that

Ry, = 0.022v (7.01)
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A typical memurement of the saturation factor might
procesed as follows. The plate voltage of the oacillator is adjusted
to provide a low level of oscillation, and the calibrator is set
to give a signal equal to that obtained from the paramagnetic
sample. The level of oscillation is then increased and a new
comparison of calibrator and sample signals is made. In genersal,
the pawer level and changes in the properties of the oscillator
circuit at the new oacillation level will alter the adbsolute
signal intensity, but these changes will affect equally the signal
from a given dissipative load across the coil, whether of %a.a-

sagnetic or calibrator origin, and the relative intensity is meaningful.

If the caiibretor and the sample still produce che same relative
signal, then S 1s still unity and saturation has not set in. The
oscillation level is then further increased until a curve of S
yersus v, the r.m.s. coil voltage, is plotted; by means of Eq.(7.01)
such a curve can be converted to S versus K,.

The shape function g()) required to calculate ka from
(¥.07) 1s determined from the measured resonance curves at low
power (where S @ 1). Since the modulation technique is used, the
line profile actually measured is proportional to the derivative
dg/day . Of course, the calibrator triode 1s supplied with 2 30 cycle
grid signal to provide a standard signal coherent with the phase-

sensitive detector reference voltage.

e bt e e, e
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}' 8. Expericeatal Results
!- Agmeous solutions of K, ON(80,). are unstadble and
' often become diamagnetic in a matter of several minutes, the
decay products catalyzing the spin-pairing reaction. It was
found that making the solution adout 0.1 normal in )(¢~.2<:(J3 gtabiliczes
the free radical solution in a pH range proper to prevent appreciable
: deterioration for several days.® In this way, measurements were

easlly made on samples containing various concentretions of
G(SO}); ion. '

Sye are indibted to Professor Weissman of the Washington University
department of chemistry for this discovery. »

All weasurements reprrted here were made at 60 Mc/ses
for the transition (F = 3/2, op = -3/2) ¢ (F = 3/2, mp = -1/2),
which is trensition 3¢9 3 on Pigure 1. This trensition was seleoted
because its frequency versus field characteristic does not depart

sufficiently from linearity to complicate width measurements, as

a wey happen for those transitions having small 4Y/dH, and because

it ie¢ reasonably intense. This transition gives, at a fixed

microwave frequency, the hyperfine triplet which occurs in the
highest external field.
Pig. 3 graphs experimental points for the derivative of
_ the resonance absorption of a 0.02 X aqueous solution of -oa(so,);' i
at 60 Mo/sec. Also placed on the graph field is a curve corresponding :
to the derivative of a so-called Lorentzls or dampeiG-oscillator ‘

15. Pake and Purcell, Phys. Rev. T4, 1188 (1928).
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line shape function. It is seen that the Lorentz curve approximates
very well to the experimental points.

In our anmalysis of the experimental saturetion data, we
follow BPP, whose oqnaiioné' can be adapted to show that for our

% Reference 7, section IV, Eq.(17). The BPP saturation paremeter
8 18 our VAW,

situation (BPP case I: the modulation frequenoy 1s much less than
HR) the decline in the derivative extremum under saturation is
given by a saturation factor

, a8 Sax(r o) [1 . v/wg",-a/a - g3/2 '

av dyv
i : (8.01)

Note that 8' is not a derivative of S. The value of V to be used
in this expeession 1s its maximum at the resonance center, thus
corresponding to the maximum value of g(1V). For a Lorentz line,
g(\))m 1s 1/v times the reciprocal of the half-width §) at
half-maximum intensity on the ansaturated g()') curve. If one

measures experimentally the width, in magnetic field units,

between points of extreme slope, lLhe conversion between the

measured quantity AH and g(» )y, 18, for the Lorentz shape
function shown on rPig. 3,

8(? Jpax -,é‘- (yan)™! {8.02) |

where v = d&)/dH 1is obtained from the {angular) frequency versus

field characteristic for the transition in Qquestion. The parameter

JH of Pig. 3 is, in terms of the width between inflction points,
(Y3/2) AR.
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, Pigures ¥ and 5 plot respectively the experimental values
of S H and of the relaxation probability Wy versus the molar
coiucentration of 0!(80,);' ion. At concentrations above 0.5 M,
the hyperfine structure begins to give way to a single broad line.
!ho lower limit of the concentration range is determined by the
decline in signel sensitivity as fewer and fewer free radicals are
present in the sample.

A striking feature of Pigures & and 5 is that both the
line width and relaxation probability appear to approach asymptoti-
cally a concentration independent value. The relaxation probability,
through 1ts limitation of the life-time of a spin state, should
contribute an amount the order of HR/Q to the totrl line width.

The low-concentration value of W./y gives about 0.7 oersteds.

This is quite compareble to the asymptotic low-concentretion lime
width of 0.3 ocersteds, and it indicates that the relaxation
processes may well determine the entire line width. If such is

the case, we will understand both Figure- 3 and 5 if we can expléin
the concentration independent relaxation probability.*

% Depending upon the relatiocmship which one assumes should exist
between W, and its contribution to §H, the fact that W /y
exceeds QH may cause some concern for the internal consistency
of our measurements; the line crrmmot be sharper than the uncer-
tainty principle would allow. However our procedure of calibrating
the »f coil (section 7) when it carries direct current is not
beyond reproach, inasmuch as the current distribution throughout
the oross-section of the copper strap at 60 Mc/sec 1s certainly
somewhat different from the d.c. distribution. Therefore a
factor of perhaps 2 must be allowed in our absolute valiues of WR;
relative values should be good within 1C percent or better.

- e -
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In order to test the possibility that the nuclear moments
of the water solvent might provide the interaction which relaxes

the free radical spins, the low-concentration measurements of

‘Pigures & and 5 were made for solutions of ON(SOB)E' in D,O0.

Although the deuteron magnetic moment is about 0.3 that of the
proton, the curves for the D20 sulution were indistingushable from
those of Pigures 4 and 5. We thus have experimental indication

that the nuclear moments of the solvent do not provide the relaxation

mechanism.

9. The Saturation Pactor for the Transition Studied.

In order to compare postulated relaxation mechanisms with
the measured value of wR, we require the expression for VR in terms
of the U's for ON(803)5'. There are six homogeneous equations of
the form (3.n3) for a system with the energy levels of Figure 1.
For magnetic dipole transitions in tne radiofrequency range, the
Boltzmann factors associated with cmission (Bq. (5.08)) usually
depart from unity by less than 10™7. Furthermore, BPP find for
water at room temperature that T, = 4 x 10722 sec. In 31.4 oeriteds,
all transitions permitted between the levels of Figure 1 occur st

frequencies of 10’ or 108 sec™t. By Eq.(5.06), the resulting
correlation spectrum jJ()) is essentially "white" with intensity
2‘Cc per unit frequency range.

Comparison of relative values of the coefficients in the

8ix homogeneous equations may therefore by made from

U = 572 Q(n)3),, | ]2 21, (9.01)

% = S s B il

— e g —— $ Ty

Ldhad R Sy




-}}-
in which the operator function Fop f Eq.(5.05) 1s

; - & Po?"' 3§ ,‘o? e &y )10:1' (9.02)

and its matrix elements are to be calculated using the spin functions
(1.02) which apply for 31.4 oersteds. Such non-vanishlng values of
l(k’Jx'J)’a for the ¥ transitions and l(lizlJ)'a for (" transi-
tions are tadbulated below in decreasing order:

3 k [te]a, | 9)]2 (xja, )9 2
3 5 0.350
1l 6 0.237

3 i 0.226

2 5 0.224

2 6 0.190
k 5 0.02%

2 3 0.023

1l 2 0.012

5 6 0.011

3 6 0.001

Magnetic dipcle transitions between level pairs 1 and 3,
land 4, 1 and 5, 2 and 4, and 4§ and 6 are forbidden. In addition
we shall neglect the three weakest permitted transitions (3 to 6,
5 to 6, and 1 to 2) in solving for 843' After so doing, one finds

for 843 an equation of the type of (3.09) with L (43) given by

1 35 + "21 25 * "25 35
23 35 + 023035 + 023025 + U2SU45 + 025035

(9.03)

F = s &f =
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Here we have dropped "thermal differences", i.e., UJk - UkJ' in

comparison with Uil‘ this may be done as soon as the equations are
placed in a form corresponding to (3.06) and it greatly simplifies

solution.®

% 7t 1s useful to note that the form of the equations and the
fact that HR must depend upcon quantities of zero order in
"thermal differences” allows one to set up an analogy with a
passive petwork of conductances. Branch points in the analog
network correspond to the energy states of the system, and the
conductance between j and k corresponds to UJk’ This is
perhaps the simplest method for calculting HR in a particular

case.

The error in dropping the three weak transitions 1s
evidently not serious, since :he correction to Uy, in Eq.(9.03)
is, for an jsotropic white radiation bath, easly shown from the
table to be about 10 percent of Uh}' Errors of 10 percent or

80 can easily creep into saturation measurements of "R’

10. The Relaxation Mechanism at the Higher Concentrations.

At the high concentration end of the curves of Figures 4
and 5, one expects ion-icn collisions to effect relaxation and

Wy should be proportional to concentration. Although the 1o0g-log

plot of Pigure 4 appears to approach a slope measurabdly greater than

unity, one should not attach too much importance to it, for this is
the region in which the hyperfine splitting is about to blur into
a single broad line. The tails of the three high frequency tran-
sitions overlap appreciably and the width of an individual line

18 difficult to measure.

fanar s =i TAECE NPT . a—
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As a check on the mechanism, one should obtain an approx-
imately correct order of magnitude for W, from the BPP Eq.(50),
intended to be used to calculate the contribution to Wa for
hydrogen nuclei through their interaction with neighboring
water molecules:

Wy ¥ g =2 gt pt 42 . N,/5KT (10.01)

Here 37 is the viscosity, which we take for our solution to be

that of water at room temperature, about 10'2 c.g.8. units. Por

0.05 molar, N 18 3 x 10*2 cm™! and Eq. (10.01) gives W, = 1.5 x 107

secl.

R

The actual measured value 18 Wy = 4 x 107 sec”). This
is probably adequate agreement considering that we have made the
approximation of free electrons by neglecting the nuclear moment
coupling and that we have approximated the viscosity of the
ON(SOB);' ion. These approximations, however, seem if anything to
be in the direction of worsening the agreement, and there is a
likelihood that the lines appear to be abnormally wide at concen-
trations just below that at which the component hyperfine lines

merge.

11. Interaction with the Nuclear Moments of the Solvent.

Although both D20 and Heo had the same effect as solvents,
we shall estimate the contribution to HR to be expected for this
mechanism and check the theory by noting whether the result is
negligible in comparison with our measured Ww,.

R

The dipcle interaction between the 2’

2 hydrogen nucleus

of the solvent and the §* ionic spin 1s
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= S 4 - - > - - 3
Hyy - Pi By ru}. - 3,y ) (pyry ) ?.-_115 (11.01)
where
Y -
My =8P Iy
(11.02)
-+ <>
Py=-85ps 9,
Following BPP, we may write
Hyg = -1 85 po° [;mcmmwj, (11 03)

where

A= sz I, (1-3 cos?

01y 77

B=-% [J+J I, + 3, 1+1] (1-3 cos® 6, ,) r,
Cm- -g EIzJ Toa + 34y Izg 8in 6, cos 0, e~ 1913 r133
P=-3 [JzJ I+ 3, 121:) sin 6, cos O, elf1y p -3

1
2

E = g Jog I, 8in 0y e2P1y =3 (11.0%)

13

- 2 +2 @4 -3

F % J_y Iy 8in” 65, € J ]

Symbols I.”1 and J__J denote the respective raising and lowering

operators: I + 12

+1 = Ixg yi x3 = Yyy
As an example, consider the contribution ¢f term E from

and J_J -

a proton at distance r:

0$P (0 - g3 G uhA2 ) %ﬂ‘”%’lﬁl“;%)l?“ SEED (ros)

m, ,m,'

vwhere W‘-VB-gI)onmi' and """’u‘gxl“o“"’i'

i
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We denote by (!m1 the fraction of protons in state m,, and by '3 and H&
the energies corresponding to the levels so numbered in Figure 1.
The nuclear contributions ®© W' and W are necessary to conserve

energy for the transitions, but may be neglected in practice.
Therefore J(!é-'-!)- 2C . @8 indicated in Sec. 9.

Apert from terms of order gy p, B/KT (about 1072 1n

30 oersteds), G = -5 for both spin states of the protons within a
thin shell at digtance r. In order to consider all protons of the
solvent, whatever the value of r, we follow BPP by assuming that
T

e
from the distance of closest approach, r

= r2/12D , D being the Aiffusion constant, and integrating
o0? throughout the solvent.
If there are No solvent protons per unit volume, the contribution

of E is
(’) - g7 s pe 8 3 Z- |(3my |- ‘E%J Ly bimy |2

my Mg (11.06)

2 -2 2 6
)(<|sin 9“ e 1’“' >av N, (er 2/12p) brrldr

Performing the indicated sums and integrations and taking the
averages of the angle functions, one obtains

(3) «E el &l l"ou £72 ¢ n_/or, (11.07)

The diffusion constant is presumably not quite the same as for
self-diffusion of pure water. However, we postulate a kind of

equivalent viscosity, y, related to roD through Stokes law:

1 6h
D?; = '1??' (11.08)
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ngx) - xl g% gg }%'ﬁ'a N, o /kT (11.09)

For pure water, ‘7 = 1.0'2 c.g.8. units near room temperature;
lacking any other value, we use this for our solution. PFrom

section 1, we find c2 = 0.903. Pinally the relaxation probability

obtained from (11.09) is

VR(B) &3 x 10% sec! (11.10)

for & dilute aqueous solution of 0&(803);"1on. This result !s
indeed consistent with the conclusion from comparison of 320 and

D,0 as solvents: the interaction with solvent nuclear dipole

moments 18 negligible in relation to the measured Wgp of 2 x 106 sec”t.

12. Relaxation through the N' Quadrupole Moment

The odd electron, which of course pospesses no quadrupole

moment, is magnetically coupled to the Nln nucleus, which has a
quadrupole moment. The relaxation probability contributed by the

Nlu nucleus can also be shown to be negligible.

We deliberately overestimate this contribution to HR
by supposing for argument's sake that the entire electric quadru-

pole interaction of the Nln

nucleus with fluctuating electric “ield
gradients 18 effective in relaxing the electron gpin. Actually
such relaxation can occur only in low magnetic fields where the
coefficients b and d entering into the linear combinations (1.02)
of spin functions are appreciable. An order o{ magnitude upper

limit to HR from this interaction is therefore, following Egs. (5.uv5), (5.06)

Wy ~H2 (eQ)2 <(-’2°)) (12.01)

s A —— i
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in which Q is the N'¥ quadrupole moment and ¢ ia the electric
scalar potential at the nucleus.

Accurate evaluation of a representative component of the

electric field gradient has not been made, even for a rigid lattice,

and equally little is lmown about the average square of such a

component for a liquid. However, Bloemnergenls found that the

16. K. Bloembergen, Thesis, University of Lteden (1948).

deuteron effected nuclear relaxation in 1iquid 020, and that the
electric field gradient has a magnitude essentially that at 1} or

® -
2A from an electronic charge. For an estimate, we take er 3, with

2
rwm ll as the magnitude ot‘Ji-% The value of Q for Bln is

-26 ’ o-11
about 10 n . Taking 1% sec., one finds that
VIR"-"IO+3 sec'l, which 1is again much smaller than the observed

value, 2 x 108 sec !,

13. The Role of Spin-Orbit Coupling

In 1936, Kron1317 proposed that unaccountably short

17. R. deL. Kronig, Physica 6, 33 (1536).

relaxation times in certain alums could be explained by considering
the important role played by spin-orbit coupling. The modulation

of the spin-spin interaction by the lattice vibrations, considered

18

in Wealler's pioneering theory” of spin-lattice relaxation proved

18. 1I. Waller, Zeits. f. Physik 79, 370 (1932)

—
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entirely inadequate to explain observed relaxation times. Another
possibility, the modulation of the crystalline Stark splitting by
the léttice vibrations, appears at first sight to hold no promise
for relaxation in those substances which possess only Kramers
degeneracy in the ground state. However, through the spin-orbit
coupling, the modulation of the Stark spli: ting is felt by the spins.

van Viecii® extended and rerined Kronig's ideas in his
momumental calculation of relaxation times for titanium and chrome
alums. Two processes are distinguished. One, the so-called direct
process, gives a highly field dependent relaxation time which ought
to apply at a few degrees Kelvin, but was found to be still too
large. The second, or Raman, process 18 effective in zero as well

as in non-vanishing external magnetic fields. It depends upon the

inelastic scattering of high energy vibrational quanta by the

spin systems, with the spin system absorting or emitting a
vibrational quantum of very low energy relative to the original

vibratlon quantum. Although this 18 a aecond order process

compared to the direct process, it 1is 1mportant because the cntire

elastic spectrum, rether than a narrow portion at its weak end, 1is
called into play. 1In fact, the Raman process probabdbly dominates at
all but the lowest temperatures.

It 1is a simple matter17 to 1llustrate the influence
of & spin-orbit term szg on Stark orbitals which possess only
spin degeneracy. The spin-orbit interaction renders incomplete the
quenching of orbital angular momentum by the crystalline electric
field, and, as a result, the spectroscopic splitting factorlg
departs from the free electron value, Be = 2.0023, by an awmount

19. C. Kittel, Phys. Rev. 76, 743 (1949)
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the order of /4 , where A 1s the Stark interaction.
It 1s less simple to demonstrate the existence, via the
Raman Process, of relaxation caused by modulation of the Stark
splitting in the _resence of the spin-orbit term ii-g. In fact,
Kronig's model, as pointed out by Van VIQcklo, yields vanishing
treansition probabilities even when pursued to second order in the
orbit-lattice modulating interaction. The vanishing in first
order is to be expected, but that in second ofder appears to be
due to 2 concellation of terms which would not cancel if the
inherent quantum asymmetry between emission and absorption
probabilities (see sections ¥ and 5) were contained in the calcula-
tion. Van Vleck includes this by use of quantized normal modes
tof the cluster of 520 molecules about the T1*+ icn, and he finds
a non-vanishing result in second order (third order, in reference
10, inasmuch as the zero order functions used dm not yet include
the effect of the ii'g coupling) .
In the vresent problem, we have no knowledge of the normal
modes of the 1liquid "lattice”. 1In fact, the free radical ion presents
several complications. The ion itseclf 18 not spherically symmetric.

When such is the case, as pointed out by Mizushima and xoideau and

20. Mizushima and Koide, Jour. Chem. Phys. 20, 765 (1952).

suggested independently by H. Primakoff, the spin-orbit interaction
>
is not simply proportional to L:‘S. The Dirac equation, after

elimination of the small component wave functions, yields tﬁo inter-

action tormsal which may be 1nc1uded22 in the spin-orbit interaction:

. e -— - —-— -
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21. L. I. Schiff, Quantum Mechanics (McGuuw-Hill, 19%49).

22. Reference 9, page 130

42 A P
Hoptn-orbit = - Tz (grad V)-grad + ek (grad V) x D ;

(13.0m)

the potential energy function for the electron is V, & 1s the elec-
tron spin and'3 is its linear momentum operator. A proper accounting of ‘
spin-orbit erfects would thus require use of (13.01) instead of i
A8,
A second complication is that, for the 03(803)5' ion

in aqueous solution, we may Justifi_ ably think of two sources for

the orbit-lattice interaction which modulates the Stark splitting

for the 0dd electron. One source involves the internal vibrations

of the icn itself which produces fluctuating local electric

fields over the orbit of the electron, and the other 1is the

solvent as its randomly moving water dipoles also produce

fluctuating local fields over the olectron orbit.

Whereas a theoretical 1nveat13ation of the inter-ction
(13.01) presents zrave difficulties for a free radical ion about

which we know so little concerning the o044 electron wave function, |

experiment may be able to distinguish which source of the orbit-
lattice interaction is dominant, provided, of coursc, that spin-
orbit coupling is involved in determirsg the "R value measured
experimentally. In order to shed some light on this important
question, we brush aside our ignorence of the quantum nature of
the motions and suppose that, for some fortuitous reason, the

spectrum of their vibrations influences the Ramar processes for

o At s 8 . A e & —— e —
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For the latter Van Vleck obtains about 10° sec™! as the reciprocal
relaxation time (which is essentially our UR) due to Raman

processes at norma) temperatures and low fields. The matrix

element in the transition probability 1s proportional to NA>,

where Van Vleck takes A, the Stark splitting, to be about 1000 cm 1
and /4 to be about 1.5 x 10~1. For free radicals, 4 may well

be about the same as for titinium alum, but A 18 much smaller;

the spectroscopic splitting factor for on(so3)§’ i1s 2.0055,
moasured in high fields®’, indicating that A = 107-.

2. J. Towmsend, unpublished

Since ilR is proportional to the square of the matrix element, our
utterly curde adjustment of the titanium result simply scales it
down by the square of the ratio of the respective A's, giving

L ~10° sec™l. 1In view of the high power of A involved and our
wild approximations, this can hardly be called disagreement with
the measured Wy, 2 x 106 sec™l,

It 18 thus entirely possible that spin-orbit effects
do lead to the observed UR, and experiments are underway in this
laboratory to exami.e whether it may be the solvent or the ’ntsrnal vibm-!
tion of the ion which provides the orbit-lattice interaction.

18. Relaxation Through Statistical Proceesses of Second Order.

An interesting possiltility for relaxation is dbrought ocut
by our detailed expression (3.09) for the relaxation probability.

T TS
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In Van Vleck's calculation, discussed in the previous section,
the quantity estimated corresponds only to 021, and nothing has yet
been said about the remaining function of U's in Eq.(3.09).
Although this function may, as in section 9, normally be small
conpaéod to U,;, such my not be the case if one amust go to second
or higher orders to odbtain a non-vanishing Ual' Physically, this
means that a relaxation mechanism which does not produce direct
transitions between the levels under consideration may still '
effect relaxation by first carrying systems to a third level and
then to the second. Such a process is second order in a statistical

rather than a perturbation theory sense, i.e., energy is conserved
for both tranait;ona, whereas the second order quantum perturbation

transition probability does not require energy conservation for

the intermediate state.

The simple model of xronigl7 18 adequate for application of
this idea to a free radical ion with spin-orbit coupling. We
suppose that the odd electron of ON(SOB);' is subject to a molecular
Stark field which splits the orbital states into widely separated
levels. For simplicity, we follow Kronig by supposing that the two
lowest of these are separated by energy A whereas the others have
very much higher energies. Each of )
these levels retains its spin degeneracy. # *
Let these orbital states be Y and o.

Then, if & and 8 refer to spin states b

+ % and - % respectively, the effect of ! \P

2 spin-orbit interaction ig is, to first

order m% » to produce the following mixtures of the unperturbed
functions Yo¢, YB, ¢, and ¢8:




-A5-
Fy= A -2bex -Raesp

ipg- ¥p +%a‘od +%boa

(1%.01)
Pym0t -2pta -Lays
‘Ig- *® +%a')"a( +£—b’l’g
Here ,
a-%fo(nx+m)¢at
(1%.02)

b-%fo L, Yat - -b*

In (14.02), ¢ 1s not denoted complex conjugate since, under the
condit‘ons of quenched orbital angular momentum, j ofeat =

s
j WL ¥ aT =0, 1t 1s possible to express ¢ and ¥ as real numbersl’

If one sets up EQs.(3.03) and (3.08) and solves for the
saturation factor and for W associlated with transitions between
P, ana §,, he rinds the following result:

w(3?) 2dg, (14.03)
In obtaining (14.03), one uses Ujp, =0 = Uy‘, as obtained from

Bqs.(14.01). Also, in terms of absorptioa probabilities, these
wave functions yeild

2
The relation (5.09) between absorption and emission holds, 2.g.,
U.l - 01‘ e A/kT . (1“.0")

Here, contrary to céases previously cited, the exponential factor

is far from unity if A corresponds to about 1000 cm™ ! (&/xT~5 at

C e e p—— - - — - —— D v PP y——— e b S




46~
roon temperature) and the result for Wp has been simplified by
dropping absorption probabilities relative to emission probabilties.

We can evaluate U,, from Eq.(5.03) in which 1t must be
recalled that we now require J(;’n) at V = A/h = 3 x 1017 sec”l.
If we take F (1 J) = 1 in Eq.(5.09) ana denote

<(Hr(3)ll)l ) ’A I QJ.'}':(?) Yat J 0f(r)od1:] )

-lz ‘12 S » (1‘.05)

where § 2 1s a measure of the mean square of the electric interaction

£{r) which modulates the Stark effect, then, by Eq.(5.09)

Ulz; =42 a2 (-}S)2 1) (14.06)
Since Ialezl and Jj(a h) = m for 4/h > 1/€c,
we have
-3 Uy = (l) (-5-) -1.:; (1%.07)

Taking Wp = 2 x 106 eec'l, NA = 10'3, and 1% = 1071} for water
solutions at room temperature, one finds that, if this mechanism
is to be adequate, §/4 would have to be the order of unity. It

is not unreasonable that the fluctuating Stark interaction arising
from motions of the strong water dipoles or the internal vibratlons

of the ion might be comparable to the static Stark interaction,
although the perturbation procedure would be somewhat strained
in that event.

Again, the crudeness of our estimate does not lead us to very

positive conclusions, but relaxation via the statistica) second

S P =
ety -
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order processes is not ruled out.

¥hether quantum mechanical or statistiocsal second order
processes are involved in determining W R? the experiments now in
progress, which are aimed at distinguishing dbetween the source of

the mclulating Stark field (intense vibrationa in the ion or

Brownian motions of the solvent), will serve a useful purpose.

15. Summary
In water solutions of the free redical ion 03(303)5‘, width

of the paramagnetic resonance seems to be determined by relaxation
processes, at least for solutions sufficiently dilute to exhibit
well resolved hyperfine structure. The achievement of statistical
equilidbrium among the various hyperfine levels in low magnetic
fields.ia more complex than in a simple two-level system. Where
saturntion methods are used, the relaxation probability is suggested

as a more precisely defined quantity than the relaxation time.

At very low concentrations, the relaxation probability for
the particular transition studied reaches a concentration independent
value of 2 x 106 sec'l. Interaction between the free radical and
nuclear dipoles of the solvent is proved an inadequate mechanism
both experimentally and theoretically. The interaction of the N1~
quadrupole moment of ou(so,)g‘ with the fluctuating electric field
gradient due to the solvent is shown on the basis of an upper limit
estimate to be an inadequate mechanism.

On the basis of very crude estimates, it is likely that
spin-o~bit coupling enables the spins to feel the effects of modulation

of the Stark splitting which quenches electrunic orbital angular
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momentum. However, it i: not certain whether internal vibretions

of the free radical ilon or motions of the solvent molecules, or
both, effect the modulation.
If the spin-orbdit coupling is involved, an interesting
possibility is that, for saturation experiments at least,
statistical second order processes in contrast to the quantum
wechanical second order processes of Van Vlieck may be responsible

5 for the observed relaxation.
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